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Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves
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It is shown that meandering spiral waves rotating in excitable media subjected to periodic external forcing
or feedback control resemble many features of nonlinear lumped oscillators. In particular, the period shift
function obtained for the Poincagscillator is qualitatively identical to that for spiral waves under fixed phase
control. On the other hand, under one-channel feedback control, meandering spiral waves exhibit quite differ-
ent dynamic regimes appearing as specific features of a distributed system. In particular, three types of
attractors(resonance, entrainment, and asynchrohafispiral waves are observed in experiments with the
light-sensitive Belousov-Zhabotinsky reaction and in numerical simulations performed for the underlying
Oregonator model. A theory of the resonance attractor for meandering spiral waves is developed which predicts
the attractor radius and specifies the basins of attraction in good quantitative agreement with the numerical
computations and experimental observations.
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[. INTRODUCTION scribed. In the final part, the theoretical and the experimental
data presented in the paper are discussed.
Nonlinear oscillators subjected to external forcing exhibit

very rich dynamics and are intensively studied in application Il. POINCARE OSCILLATOR
to many objects in physics, chemistry, and biolddy-6]. o, . ) )
Meandering spiral waves rotating in distributed excitable —The Poincarescillator is commonly used in order to cap-
media resemble basic features of nonlinear oscillators and, ifré important qualitative features of nonlinear oscillators
particular, can be synchronized by application of a periodidinder external forcing3,23]. It is convenient to express the
parametric modulatiofi7,8]. However, the distributed nature corresponding evolution equations in a polar coordinate sys-
of excitable media allows us also to observe quite differenf€m (r.0):
dynamical regimes, such as a resonance drift of spirals in-

duced by external forcing9,10]. Moreover, feedback- ﬂzkr(l— N )
controlled forcing of an excitable medium creates conditions dt ’
for the formation of so-called resonance and entrainment at-
tractors of spiral wavegl1,12. de
The controlled dynamics of spiral waves induced by a a=2w.

modulation of the excitability is important for many applica-

tions, e.g., for the defibrillation of cardiac tiss[(3,14. In

this connection, theoretical and experimental investigationSt@"ting ar =1, the phase point will describe the unit circle

of parametrically forced spiral waves are a subject of growVith monotonously increasing. The system achieves this

ing interest[15—22. However, the theory of the resonance &ltractor starting at any value of exceptr =0. The param-

attractor of spiral waves is up to now elaborated only in€t€rk determines the rate at which the valuer@pproaches

application to rigidly rotating spirall7,21,23, while it was r:1._ _The phase of the established oscillation is naturally

first discovered in experiments with meandering spifald. ~ SPecified by the polar angle. L

Recent resultf18] arouse a hope that the existing theory can Ve consider first the dynamics of the Poincaseillator

be generalized to the case of meandering spiral waves. under a periodic sequence of §hort pulses. Lgt us assume that
In this paper, we perform a systematic numerical and ex&ach of these pulses forces a jump of the point freqy to

perimental study of meandering spiral waves subjected X Y')=(x.y+a), where y) are Cartesian coordinates.

external stimulation and develop on this basis the appropriat®f course, such a jump changes the momentary ragits

theoretical description. In the first part of the paper, a perifhe new value

odic forcing and a feedback control of the Poincaseillator

is considered in order to illustrate some general properties of r/=\r?+a’+2r;asing;, 2

lumped nonlinear oscillators. Then, periodic forcing and

fixed phase feedback control of meandering spiral waves an@here 6, is the phase just before thith pulse was applied.

studied in the Oregonator model. The next part is devoted to The pulse induces also a phase skiiftthat can be found

a description of spiral wave dynamics in the Oregonatoffrom the equation

model subjected to a one-channel feedback. Here a theory of

the resonance attractor of meandering spiral waves is pre-

sented. After this, the experimental results obtained for the cosd=—= > —.

light-sensitive Belousov-ZhabotinskBZ) reaction are de- Jri+a’+2rasing;

ri+asiné,

()
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In the limit k—o, the disturbed value of; immediately L L L
approaches the unit circle. In this case, the effect of periodic
forcing on the Poincarescillator is completely determined i (@)
by a one-dimensional map

0i+l: 0i+l9i+2’7TT, (4)

where T is the stimulation period that can differ from the
natural periodT,=1.

In the regime of a one-to-one frequency synchronization,
two equalities are validd, ;= 6;+27 and ;= U, ,="1.
Then, from Eq.(4) follows the condition for the synchroni-
zation:

0.8

T=1- 5 :
—1- o (5) :

0.0 0.2 0.4 0.6 0.8 1.0

Substitution of Eq(3) with r=1 into Eq.(5) gives a rela-
tionship between the locking angk and and the shifted tep
period(i.e., the forcing periodT in the synchronized regime: r (b)

1 l+asing r
T=1- —arcco% ) . (6) 1F

21 Ji1+aZ+2asing

Such a relationship is called the period shift functji@d]. In :
the case of small perturbatio@s<1, its analytical expres- i <t \ 0
sion becomes very simple: 1.0 4 ! %

acosé e ! ’
T=1- . 7 Lo >
2 R

0.9
This pure harmonic shape of the period shift function is a B

very general property of nonlinear oscillators under small .

perturbationg 24]. r
Note, that the locking angl® specifies the phase shift E L

between the oscillations and the external forcing. In experi- o 05 o s

ments with oscillating systems, it is suitable to characterize T

this phase shift by a time delaybetween some marker event

and th? application of.a per'gurbatiop. tor (1). (a) The solid curve corresponds to the analytical expression
In Fig. 1(a), the period shift function computed f&==5 () with 7=6/(27). Diamonds and asterisks are obtained from

anda=0.5 is plotted usingr=6/(2) as an independent girect integration of Eq(1) with k=5 under periodic forcing and
Var'able The Obta'ned Shape Of the pe”od Sh'ft funCtIOI"I defeedback ControL respectivel&)) The dashed curve shows the pe-
viates only slightly from the harmonic limi). Synchroni-  riod shift function extrapolated untit=2. Diamonds and asterisks
zation(frequency lockingis restricted to a certain interval of represent results of direct integration @ with k=2 under peri-
the external period. Outside of this entrainment band, qua- odic forcing and feedback control, correspondingly. Dotted lines
siperiodic oscillations occurl]. For each value of within indicate the bistability interval.

the entrainment band, there are two synchronized regimes

corresponding to quite different values of the time defay njzed oscillations are possible only on the branches of the

[see Fig. 18)]. However, a linear stability analysis of map period shift function with positive slopfsee diamonds in
(4) reveals that only those regimes are stable for whictFig. 1(a)].

o bz v b v b s

N
o

FIG. 1. Period shift function computed for the Poincaseilla-

d9/d#<0. Taking into account Eq5), it gives the follow- It is important to compare these results with feedback-
ing stability condition: controlled forcing of the Poincarescillator. As an example,
let us consider the following feedback mechanism, which is
dT called fixed phase feedback contf@5]. Here the forcing
—>0. (8) . . : : .
dr pulses are applied with a fixed time delayfter the instant

when #=0. Hence, all perturbations will be applied at the
Direct integration of the Poincammodel (1) subjected to a same phasé#=2w7. In the case&k— o, the phase point re-
periodic forcing confirms this analytical prediction: synchro- turns immediately to the limit cycle. Thus, after the very first
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pulse has been applied, a periodic regime will be establisheldtions are established very quickly, and it is not necessary to

with a periodT depending on the value af as specified by integrate Eq(1) during a long time in order to distinguish

the period shift functior(6). Obviously, under the feedback pure periodic from quasiperiodic regimes as it should be

control, all branches of this function are stablekils infi-  done in the case of periodic forcing.

nitely large. However, if the rate constaktbecomes smaller, the sys-
Direct integration of modek1l) subjected to the fixed tem has no time to return back to the unit circle after a

phase feedback control demonstrates that all periodic reperturbation and the history of the previous stimulations

gimes determined by the period shift function can remainshould be taken into account. Ligtand 8; be the values of

stable even for finite values & Figure 1a) illustrates such and @ just before theth perturbation. Then the value of

a possibility fork=5. Thus, the feedback control reveals after the perturbation obeys E@) and the phase jump; is

some branches of the period shift function, which are imposspecified by Eq(3). This phase jump determines a tirfig

sible to observe under periodic forcing. Moreover, by appli-until the next perturbation:

cation of the feedback control, the boundaries of the entrain-

ment bandArnold tongue are determined much more easily T—1 Y
- . S . i=1l—=—, 9
than by periodic forcing. For each value gf periodic oscil- 2

1.0 T T T T T T 1.0 T
(b) |
0.5 — 0.5 — —

- >
0.0 — o.0 —
-0.5 — 0.5 —
-1.0 I | 1 | -1.0 | | 1
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

1.0 T T T T 1.0 T T 7 7 T T
: © | : (d) -
0.5 — 05— —

> >
0.0 — c.0 —
0.5~ - -0.5 -
-1.0 I PR TR T SR NN SN T ST S ST SN S N ST ST S R -1.0 I TR T T T T S ST ST S S S|
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

FIG. 2. Trajectories of the Poincamscillator (1) subjected to the feedback control computedKer2 and different values of the time
delay.(a) 7=0.6, (b) 7=0.76, (c) and(d) 7=1.74.
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which is not necessarily constant in contrast to the case of The considered example of the Poincaszillator dem-
the periodic forcing. onstrates that the period shift function is an appropriate tool
The valuer, . ; just before the i(+1)th perturbation can to compare the dynamics of nonlinear oscillators subjected to
be found by integration of the systefh) [25], which gives  periodic forcing and to feedback control. In the following
sections, the obtained results and methods will be used to
r! analyze the dynamics of meandering spiral waves in distrib-

|
= . 10 i
(i —1)exe —kT,) (100 uted excitable systems.

li+1

The stationary state,=r;=r;,, of maps(2), (3), (9), an}i [ll. PERIODIC FORCING AND FIXED PHASE FEEDBACK
(10) determines possible periodic regimes of the Poincare CONTROL OF MEANDERING SPIRAL WAVES

oscillator under the feedback control. These regimes are ) . i
stable for Meandering spiral waves are common spatiotemporal pat-

terns in excitable media and are intensively studied in experi-

dri,, ments with the Belousov-Zhabotinsky re_acti{?’m26—28.
‘ ar. <1. (11) The two-component Oregonator model is widely used to
blri=rg simulate the light-sensitive version of this reaction:
The derivativedr;, ;/dr; vanishes whek—oo and remains au 1 u—q
small enough fork=5. This explains the stability of the —=V2u+ u—ul—(fo+¢)—/|,
synchronized regimes shown in Figal by asterisks. ot € u+q
However, direct integration of Eq1) performed fork 12
=2 demonstrates that not all periodic regimes induced by v
the feedback are necessarily stable, since conditldh is E=u—v.

not valid for some values of. For instance, Fig. (@) shows
a stable periodic trajectory of systefi) computed forr
=0.6, while the computations for=0.76 lead to an un- Here the variables andv correspond to the concentrations
closed irregular trajectory shown in Fig(. This trajectory  of the autocatalytic species HBgGand the catalyst, respec-
appears due to an instability of the periodic oscillations cortively. The parameters=0.05, q=0.002, andf =2.0 were
responding to this value of the time delay. fixed. The term¢= ¢(t) describes the additional bromide
Another interesting feature of the feedback-controlledproduction that is induced by the external illumination of the
Poincareoscillator is a bistability phenomenon that can besystem[29]. In order to simulate a periodic forcing of the
observed for relatively long time delay. To consider this situ-system, the functiomb(t) is given as a sequence of impulses
ation, the period shift function shown in Fig(al can be with amplitude A=0.008 and duratiorD=0.3, which are
easily extrapolated to an arbitrary large value of the timeadded to a background intensify=0.01. The computations
delay. Indeed, if periodic oscillations occur at the time delaywere performed by the explicit Euler method on a 380
7 with the oscillation periodl =T(7), then the same peri- X380 array with a grid spacingx=0.2 and time stepat
odic regime should be observed at the time detayT (7). =0.002.
The extrapolated phase shift function obtained after such a A spiral rotating counterclockwise near the center of the
transformation is shown in Fig.()) by the dashed curve. simulated domain was created by a special choice of initial
Obviously, this transformation flattens branches with a posiconditions for systenil2). The unperturbed trajectory of the
tive slope and enhances negative slopes. In particular, thepiral wave tip and the shape of the spiral are shown in Fig.
slope of the period shift function near 1.75 becomes prac- 3(a).
tically vertical. At the time delayr=2.75, the slope is even The observed compound rotatiGmeandering motionof
positive, and the period shift function becomes bistdhlet  the spiral tip can be characterized by two different periods.
shown in Fig. 19)]. The oscillation period measured at the symmetry center of
This bistability can also be observed for shorter time de-unperturbed trajectory wa$,=2.8. A different periodT.,
lay, if the rate constank becomes smaller. Note that the =3.6 was measured far enough from the center near the
dashed curve in Fig. () corresponds to the period shift domain boundary.
function obtained ak=>5, which is practically the same as  Far away from the rotation center, the meandering spiral
for k—o. Diamonds and asterisks in Fig(b) represent pe- wave resembles a rigidly rotating spiral: it has the form of an
riodic regimes of systenil) computed withk=2 for the  Archimedean spiral and uniformly rotates at a peribd.
periodic forcing and the feedback control, respectively. DataMoreover, a periodic parametric forcing with the periéd
of feedback-control computations differ only slightly from =T, induces a resonant drift of the rotation cerftsze Fig.
the asymptotic shape of the period shift function. However, &(b)], as known for a rigidly rotating spirap,10].
bistability is observed near=1.74. Figure &) shows the A quite different phenomenon, namely entrainment, can
trajectory obtained as a result of integration of systdm be observed if the stimulation period is chosen to be close to
with continuously increasing value af. Decreasing ofr T, [7]. Under such a forcing, the rotation center does not
starting atr= 2.0 results in a quite different trajectory shown move, but the shape of the spiral tip trajectory is changed
in Fig. 2(d). with respect to the unperturbed one. Within an entrainment
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FIG. 4. Trajectories of the spiral wave tip computed for model
(14) under periodic forcing at different periodsa)—(c) and under
fixed phase feedback contréd)—(f). (@) T=2.29, 7=0; (b) T
=2.68, 7=0.62; (c) T=3.11, 7=1.3; (d) 7=2.0, T=2.84; (e) 7
=4.6,T=2.3; (f) 7=4.6, T=3.12. Thick segments of the trajec-
tory correspond to the application of the external impulses. Scale
bar: five Oregonator space units.

(b)

In order to show the domains with negative slope, let us
apply a fixed phase control mechanism to meandering spiral
waves. To this end, the pulses are generated immediately at
the instancet, when V(t)=V,, or after a time delayr.
Hence, all pulses are applied at the same well-defined oscil-
lation phase. Under similar fixed phase control, the whole
period shift function was reproduced in the case of the Poin-

FIG. 3. Trajectory of the spiral wave tip computed from model
(12). (a) The unperturbed trajectorsolid) and the momentary lo-
cation of the spiral wavéshaded regions (b) Resonant drift in-

duced by a periodic parametric forcing with the peride-T., careoscillator[e.g., ;ee F!g.(]a)]. L
=3.6. Thick segments of the trajectory correspond to applied ex- For the meandering spiral wave, this fixed phase feedback

ternal impulses. The drift direction is specified by angle also gives interesting results shown in Fig. 6 by the dashed
curve. During these computations, the time delay was

band, the motion of the spiral tip is synchronized with the
external periodic forcing, similar to the case of the Poincare
oscillator considered above. Three examples of entrained tra
jectories are shown in Figs(@-4(c). The number of lobes 06 I
grows with the stimulation period. Of course, deformations
of the trajectory shape are closely connected to variations o~
the phase at which the external impulses are applied. 06
In order to specify the phase of external forcing, let us
consider the propagation velocity of the spiral wave tip.
This value oscillates at the periol, for the unperturbed 04l
spiral and at the period within the synchronization band, as
shown in Fig. 5. A suitable marker event in these oscillations I
is the instant at which the increasing velocity reaches a giver 5
value V=V,. The delayr can be determined as the time
interval between this event and the application of the exter- I
nal pulse. ool . . . o0y
Using this definition ofr, the period shift function corre- 20 25 30 35
sponding to the periodic forcing of the meandering spiral is
specified by diamonds in Fig. 6. As in the case of the Poin- G, 5. Oscillations of the spiral tip velocity corresponding to
careoscillator, synchronization takes place forwithin an  the synchronized rotation shown in Figich The thin solid line
entrainment band. However, it can be assumed that thesgpresents the stimulation sequence. The dashed line indicates the
data show only the branch of the period shift function with chosen threshold valué,= 0.7 (Oregonator space units per Orego-
positive slope, because the branches with negative slope anator time units The dotted lines illustrate the definition of the
unstable under periodic forcing. time delayr. Timet is measured in Oregonator time units.

S
o
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FIG. 6. Period shift function corresponding to periodic forcing
(diamond$ and the fixed phase stimulatidquashed ling of the

meandering spiral wave computed for the Oregonator m¢id! FIG. 7. Trajectories of the spiral wave tip computed for model
Dotted lines indicate the bistability interval. The rotation period and(12 under the one-channel feedbac¢k) 7=0.6, T=2.84; (b) 7
time delay are measured in Oregonator time units. =1.4; (c) 7=1.3; (d)7=2.0. Thick segments of the trajectory cor-

respond to the application of the external impulses. Scale bar: five

s . Oregonator space units.
changed within an interval from zero te=2T,. At the left- g P

most branch of the period shift function with a positive
slope, the results of the periodic stimulation completely co
incide with those obtained for the fixed phase stimulation. |

particular, the trajectories shown in Figsa#-4(c) are the instant at which the value of exceeds a given threshold

same for both types of stimulations. However, the flxedvth. Consistent with the previously used definitions, the time

phése control aIIow:'s us to reproduce a(jditional Os.cnlatin%elay 7 can be specified as the time interval between this
regimes corresponding to the branches with a negative S|0p8\/ent and the application of the external pulse

ﬁn e):]?rmptlti oliis,ucza? tL?J)eC;[r?ry |§ts:1nov;/n 'T F'gd):l Herel,i q Meandering spiral waves in the Oregonator model sub-
contrast 1o FIgs. @)—4(c), the external puises aré applied jo e to this one-channel feedback exhibit quite different

?gtaeghtgg lISICC:)Eti(IE iﬁ;\t’?:]g?iggé'é?: ?;ﬁ%g%{ff;%:ﬁ; gee'{]iynamics compared to the fixed phase control. In particular,
) y 9 the spiral dynamics depends on the distance between the de-

hal_];_r?f the pe”.OdTO' f Figs.(& and 4e) illustrates th tection point and the spiral wave core.
€ comparison of FIgs.(& and =€) iustrates the pos- For instance, if initially the detection point is chosen

sibility to extrapolate the period shift function computed for rather close to the spiral wave tip, the application of the

re/:latively small to Iarger va_lues using the transfor_mation one-channel feedback leads to the so-called entrainment at-
7'=7+nT(7), wheren is an integer. Indeed, the rajectory a.10r 11,17, The rotation center of the spiral starts to
shown in Fig. 4¢) is practically |Qent|gal to the one n Fig. move toward the detection point, and after a transient pro-
4(a), although the corresponding time delays differ bycess a perfectly synchronized trajectory of the spiral wave tip
2T(0)'. . . ) . ) can be registered. An example of such synchronized motion
. Again, as in th.e case O.f the Pomcamnllator, a b's.tab"' computed with the Oregonator model is shown in Fi@).7
ity phenomenon IS fc_)und_ in a narrow interval ﬂf_eSt”Cted The same shape of the trajectory with the same oscillation
by the dotted lines in Fig. 6. Indeed, for the time delay perjog can be found in computations under fixed phase
=4.6, two quite different trajectories are obserVetl Figs.  gtimylation. However, it takes some time in order to achieve
4(e) and 4f)]. the synchronized motion by application of the one-channel
feedback, while the fixed phase control leads to immediate
synchronization. Obviously, the value of the time delays cor-
responding to these synchronized regimes should be differ-
ent, because of the quite different definitions of the marker
In order to realize the fixed phase control considerecevents.
above, very detailed information about the spiral tip motion The period shift function corresponding to computations
should be available. Usually such information is rather diffi-of the entrainment attractor for different valuesrag shown
cult to collect in experiments and therefore another feedbackay asterisks in Fig. 8. Data obtained for periodic forcing with
control scheme, the so-called one-channel feedback, is aflie same definition of the time delay are shown by diamonds.
plied[11]. In accordance with this scheme, the wave activityThese data belong to the leftmost branch of the period shift

(e.g., the value of the variablg) is measured at a particular
‘detection point as a function of time. This value oscillates
ith time. A natural marker event in these oscillations is an

IV. THE OREGONATOR MODEL UNDER
ONE-CHANNEL FEEDBACK
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3‘5III:IIII:IIII:IIIIEIIII:IIII:

. ; : . : : 2w
i ; ; ; : | @(r,t)=®0—Tr+wt, (13

e L i where \ is the wavelength andb=2#/T,, is the angular
, i = velocity. The constant angl®, specifies the orientation of
; o the spiral at=0.
b S Ly Periodic forcing of the spiral by a sequence of short
! A e pulses will result in a resonant drift, as shown in Fig)3To
1 Py : /i § simplify considerations, each pulse will be represented@s a
N . s function of time. Let us assume that under the periodic forc-
0 by oo § ing given ad (t)=Ad[ coswt)—1] and®,=0, the observed
;o /" Py § § direction of the resonant drift is specified by an angle
‘ ‘ ’ ’ ' =¢ with respect to theX axis. For a fixed shape of the
; ; : : : : pulses, this angle is a characteristic parameter of the excit-
ool T T T able medium. Obviously, for an arbitrafy,, the drift angle
0 1 2 3 will be y=¢+0,. A periodic forcing in the forml(t)
T/Te =Ad[ cost— ¢,y —1] with a phase shiftp,,, can be consid-
ered as a stimulation witkh,,=0, but with initial spiral ori-
entation taken at the timg= ¢,/ w. Thus, the drift direc-
tion for an arbitrary chosefd, and ¢,,, can be written as

3.0

2.5

FIG. 8. Period shift function corresponding to periodic forcing
(diamond$ and one-channel feedbacasteriskg computed for the
Oregonator mode{12). Dashed lines represent other branches of
the period shift function obtained after its extrapolation to larger
values of . Within intervals of  bounded by dotted lines and
marked by bars, the resonance attractors are observed. The rotation
period is measured in Oregonator time units.

Y=¢+ 0o+ . (14

Under the one-channel feedback control, the phase of the
stimulating pulse sequence depends on the spiral location.
For instance, if the spiral wave center is placed at the point
function with a positive slope, which looks qualitatively (d,0), the spiral front specified by E(L3) crosses the origin
similar to that obtained abovéf. Fig. 6). This branch is of the coordinate system at each tiniewhen wt;+®,
extrapolated to larger values afby the transformation’ —(2#/\)d=—m+2mi. Hence, the stimulating sequence
=7+nT(7). will be generated as

The main qualitative difference between the period shift
functions shown in Figs. 6 and 8 is that under the one-
channel feedback, it is not possible to obtain the branches
with a negative slope. Moreover, very often it was impos-
sible to observe synchronized motion even for branches withith the phase shift,, determined by the following expres-
a positive slope. sion:

The main reason for this discrepancy is the existence of
the so-called resonance attractor of spiral wa\es12. A
specific feature of this dynamic regime is a relatively large
distance between the detection point and the spiral core cen-
ter. However, the resonance attractor can be achieved evenTid determine the direction of the drift induced by the one-
the detection point is initially located rather close to the spi-channel feedback, expressi@6) should be substituted into
ral core. This happens, for instance, if the time detaijs  Eq. (14), which yields
chosen larger than the boundary value marked by the left
dotted line in Fig. 8. Figure (B) illustrates the trajectory of
the spiral tip computed for this case. The trajectory consists
of a meandering motion of the spiral tip that resembles the
unperturbed one, superimposed by a drift of the symmetryt is important to stress that under the described one-channel
center. After a transient process, this drift occurs along deedback, the drift direction does not depend on the initial
circle centered at the detection point. orientation®  of the spiral. The displacemedtof the spiral

While the entrainment attractor resembles synchronizedenter from the detection point and the time detagom-
oscillations of lumped systems, the resonance attractor is jgletely determine the drift anglg with respect to the dis-
typical property of a distributed medium. A theory of the placement direction.
resonance attractor has been elaborated recghfly2] in Along a resonant orbit around the detecting point, the
application to a rigidly rotating spiral. In order to extend this induced drift is always orthogonal to the radial direction.
theory to the case of a meandering spiral, let us assume thathis means that the drift angle should obey the simple
far away from the symmetry center the shape of a countereondition
clockwise rotating wave front is approximated by an
Archimedean spiral: v=ml2+ mn, (18

[(t)=Ad , (19

27
CO{ ot—7+ ®0_Td_w7) -1

2
Pm=7— 0O+ Td—l—wr. (16)

2
y=@+ 7+ Td+w7'. (17
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20T corresponding to different values of the integerThe spiral

wave is attracted to an orbit with a givenif initially it is
located in the corresponding basin of attraction. The bound-
aries of the basin of attraction are determined by(E) and
shown by solid lines in Fig. 9. These theoretical predictions
are in good quantitative agreement with the results of the
direct integration of the Oregonator modéR) represented
by diamonds in Fig. 9.

Only in the region of small radii, wheri@<<0.3\, depen-
dence(19) is violated. This is the region where the entrain-
ment attractor can be observed. Radii of the entrainment at-
tractors obtained in computations presented in Fig. 8 are also
shown in Fig. 9. For smalf, the radius increases with the
time delay and reaches the boundary of the basin of attrac-
tion of the resonance attractor atT~0.4. This critical
value for the time delay is shown as the left dotted line in
Fig. 8. For larger time delay, within the basin of attraction of
the resonance attractor, the entrainment attractor becomes

FIG. 9. RadiusR of the resonance attractors vs the time detay unstablefcf. Figs. 7a) and 1b)]. The radius of the entrain-
computed for the Oregonator modeliamonds and predicted by  ment attractor remains nearly constant when the time delay
Eq. (19 (dashed lines Boundaries of basins of attraction according jncreases and can be estimatedRas 0.2\. Using this esti-
to Eq. (20) are shown by solid lines. Radii of the entrainment and ate and considering Fig. 9, it can be expected that the en-
e_tsynchronous attractors are shown by triangles and squares, respPeCiinment attractor is unstable in the interval QAT
tively. <0.9 and the resonance attractor should be observed. This
interval of 7 is marked by a bar in Fig. 8.

Now it becomes clear why a branch of the period shift
function with a negative slope was not found in our compu-
tations illustrated by Fig. 8. Indeed, the entrainment attractor

increases wittd. Therefore, smalll (_1eV|at|ons from the circu- cannot exist within the basin of attraction of the resonance
lar pathway are damped oamplified for n=2m (n=2m attractor

+1). The radiusk of the corresponding orbit can be found Expressiong19) and (20) and Fig. 9 show that the inter-

as a solution of Eqs17) and (18): val of 7, where only the resonance attractor can be observed,
will appear periodically along the axis with periodT., (see
RIN=m—0.25- —~ — 7T, . (19)  other bars in Fig. B Hence, once more the entrainment at-
2m tractor can be expected within the interval €.89/T,<1.4.
Our computations with/T.~ 1.0 confirm this prediction as
These stable orbits are the attractors of a spiral wave und@hown in Fig. 8. However, even in this interval of where
the one-channel feedback. The basins of attraction arge resonance attractor does not destroy the synchronized
bounded by unstable orbits, which correspondsite2m  motion, it was impossible to observe a branch of the period
+1, and have radii shift function with a negative slope. Instead of complete syn-
chronization, the trajectory looks like an asynchronous mo-
tion, still occupying a relatively small spatial domain, as
shown in Fig. 7c). We call this new dynamical regime the
asynchronous attractor.
In order to apply this theory to the Oregonator model, the Figure 8 shows that the next possible region of the en-
characteristic constant should be determined. To this end, trainment attractor is located nealfT.,~2.0. However, here
the computations presented in Fig. 3 can be used. Indeed, tlaso only the asynchronous attractors have been found, e.g.,
orientation of the spiral wave just before the beginning of thesee Fig. 7d).
periodic stimulation is shown in Fig.(8. The presented
front shape is approximated by E{.3) with ®,=0.65 and
N=17.7. The angley which specifies the drift direction
shown in Fig. 8b) is estimated agy=—1.15. Taking into

1.5

R/A

1.0

05

0.0

wheren is an arbitrary integer. It follows from Eq17) that
the motion along the circular pathway will be stable only if
is an even numben=2m. Indeed, according to Eql7), y

RIN=m+0.25- — — /T, . (20)
21

V. THE BZ REACTION UNDER
ONE-CHANNEL FEEDBACK

account that in these computations the phase ghjft0, The experimental part of this work is performed with the
and substituting these data into E@.4), the value o= light-sensitive version of the BZ reaction using the setup
—1.80 is found. described in Ref.18]. An open reactor allows us to maintain

Substitution of this value into Eq19) yields the attractor the system in a stationary nonequilibrium state. Premixed
radiusR as a function of the time delay in the feedback feeding solution prepared from stock solutions containing
loop. This relationship is plotted as dashed lines in Fig. 9[NaBrO;],=(2.06x 10 )M (Aldrich, 99 +%), [H,SO,],

For each value of-, there are several possible stable orbits=(3.1x10 )M (Aldrich, 95-98%, malonic acid
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[CH,(COOH),],=(1.86x10 )M (Aldrich, 99%), and (a)
[NaBr],=4.12< 10 ? (Fluka, p.a) is pumped continuously

through the reactor with the rate 120 ml/h. Circulating water

from a thermostat maintains the temperature at (25.0

+0.5) °C. The catalyst is immobilized in a silicahydrogel
layer of 0.5 mm thicknes&ctive layef prepared on a plate
of frozen glasgdiameter 63 mrn To protect the active layer
from stirring effects, it is covered by an inactive gel layer not
loaded with the catalyst.

The active layer is illuminated by a video projectéa-
nasonic PT-L555E controlled by a computer via a frame
grabber(Data Translation, DT 2851 The illuminating light
is filtered with a bandpass filtdBG6, 310—-530 nm Every
1 s the pictures of the oxidation waves appearing in the gel
layer are detected in transmitted light by a charge-couplec
device camergSony AVC D7CH and digitized with a frame
grabber(Data Translation, DT 3155or immediate process-
ing by the computer. During the same time step, the light
signal applied by the projector can be changed in accordanc
with the processed informatiaifieedback or following ana
priori given program(e.g., periodic forcing

A single spiral wave, which constitutes the initial condi-  FIG. 10. Trajectories of the spiral wave tip observed in experi-
tion for all the experiments, is created in the center of the geients with the BZ reaction under periodic forcif@, (b) and under
disk by breaking a wave front with an intense light spot. Thethe one-channel feedbadk)—(d). (@ T=28s, 7=22s; (b) T
location of the spiral wave tip is defined online as the inter-=32's, 7=0 s; (c) 7=4 s; (d) 7=30s. Thick segments of the
section point of contour lines (06 amplitude extracted trajectory correspond to the application of the external impulses.
from two digitized images taken with time interval 2.0 s. The Scale bar: 0.5 mm.
tip trajectory, the control signal, and the wave activity at an,

arbitrary detection point can be visualized online by the comIS Shown in Fig. 1(). In contrast to the entrainment attrac-
puter. tor, the rotation center moves along a circle with a radius

An unperturbed spiral has the wavelengtk 2.0 mm. Its much larger than the size of single lobes. This radius depends

tip describes a meandering trajectory containing about fouP" the time delayr in the feedback loop. Data of a system-
lobes. The rotation period measured far away from the sym@tic study of this dependence are shown in Fig. 12 by dia-
metry center wag ,.~40 s. monds. _ _ _
Under a periodic change of the illumination, the spiral The asynchronous attractor is also observed in our experi-
rotation can be synchronized. Figuregatand 1@b) show
two examples of such synchronized spiral tip motion ob-
served for two different periods of external forcing. Simulta-
neous registration of the wave activity at the symmetry cen-
ter of the observed trajectory allows us to measure the time
delay between the wave passage through the center and tt g4
application of an external perturbation. These data are use
to determine the period shift function shown in Fig. 11. 8
Application of the one-channel feedback control also al- >
lows us to observe a synchronized motion if the entrainment™
attractor is created. For instance, the tip trajectory shown in  os
Fig. 1Qb) is observed for both types of stimulation: periodic
forcing and one-channel feedback control. However, not all
synchronized regimes obtained under periodic forcing can be
reproduced by application of the one-channel feedback anc : :
vice versa. For instance, the trajectory shown in Fidalis o7 e e
observed only in experiments with periodic forcing. All at- 0.0 05 1.0 1.5 20
tempts to reproduce the periodic regime introducing a corre-

sponding time delay into the feedback loop resulted in a pg. 11. period shift function corresponding to periodic forcing
resonance attractor. On the other hand, a periodic fOfCIngjiamond$ and one-channel feedbachsterisks obtained experi-
does not synchronize the spiral tip motion in the period rangenentally for the light-sensitive BZ mediusolid line). Extrapola-
0.88<T/T.<0.93, while a one-channel feedback does. tion to larger values of is shown by the dashed line. Within inter-

Another possible regime under the one-channel feedbackals of  bounded by dotted lines and marked by horizontal bars,
control is the resonance attractor. An example of this regiméhe resonance attractors are observed.

1o T T T v T T T T T T T T
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1.0

[24]. For lumped systems, the period shift function is very
helpful to analyze the stability of a frequency locked motion
and bistability phenomena.

The motion of a meandering spiral wave under fixed
phase feedback control in many aspects resembles the dy-
namics of a periodically perturbed nonlinear lumped oscilla-
tor. Indeed, the period shift functions shown in Fig&)land
6 are qualitatively identical. Frequency locked oscillations
take place in a restricted range of the forcing period. Only
the part of the period shift function with positive slope is
reproducible under periodic forcing. For sufficiently large
time delay in the feedback loop, bistability can be observed.

Apart from a fixed phase control, there are many other
possibilities to construct an effective feedback mechanism in
an excitable medium. A typical example is a one-channel
feedback that is analyzed in detail in this work. This type of
feedback control is commonly used in experiments with the

FIG. 12. Radii of resonandeliamonds, entrainmenttriangles, ~ B4 réaction [11-13,18,19 and induces qualitatively new
and asynchronoussquares attractors determined experimentally features in the dynamics of meandering spiral waves com-
for meandering spiral waves in the light-sensitive BZ medium vsPared to lumped oscillators. Our systematic study of spiral
the time delay in the feedback loop. The dashed lines show th&/ave dynamics under the one-channel feedback reveals three
theoretical predictions for the radii of the resonance attractor actypes of attractors of meandering spiral waves. Two of them,
cording to Eq.(19), the solid lines are the boundaries of the basinsthe resonance and the entrainment attractors, have been re-
of attraction according to Eq20). ported earlief11,12], while the third one, the asynchronous

attractor, was unknown. The final diagram in Fig. 12 shows
ments[e.g., see Fig. 1@)]. In contrast to the resonance at- the mutual arrangement of these three types of attractors.
tractor, the motion of the spiral tip is restricted to a relativelyAmong them the most surprising is the resonance attractor,
small spatial domain, such as in the case of the entrainmenthich appears as characteristic features of distributed sys-
attractor. However, this motion is not synchronized with thetems. In contrast to the frequency locked motion of lumped
feedback signal. oscillators, a temporal synchronization is not a specific prop-

Expression(19) for the radius of the resonance attractorerty of this regime. Nevertheless, the resulting trajectories
contains only one unknown parameterwhich specifies the are well ordered in spadesee Figs. &) and qb)].
direction of the resonance drift. In order to avoid rather com- In this work, the theory of the resonance attractor devel-
plicated experimental procedure to determine this value, theped earlier for a rigidly rotating spirgl7,21] is generalized
obtained experimental data were fitted by linear dependencds the case of meandering spiral waves. The obtained depen-
(19) with ¢=—0.31 as shown in Fig. 12 by dashed lines.dence(19) of the attractor radius on the time delay in the
Then, the boundaries of the basin of attraction were specifieteedback loop contains only one unknown parameter, which
in accordance with Eq(20) (solid lines in Fig. 12 These can be directly measured or determined from available ex-
basins of attraction determine intervals of the time detay perimental data. The resulting theoretical predictions for the
corresponding to the appearance of the resonance attract@itractor radius are in good quantitative agreement with both
These intervals are marked by horizontal bars and verticatumerical and experimental datef. Figs. 9 and 1P
dotted lines in Fig. 11. Our theory predicts also the basins of attractisolid
lines in Figs. 9 and 12and allows us to answer the important
guestion first posed in Refl12]: Why does the entrainment
attractor become unstable for sufficiently large time delay?

A systematic study of the meandering spiral wave undefur study clearly demonstrates that this destabilization takes
pulsatory modulation performed in this work demonstrateglace if the spiral tip enters into the basin of attraction of a
very reach diversity of possible dynamical regimes. To idenfesonance attractor.
tify relationships in this diversity, a comparison between pe- The intervals of the time delay corresponding to the reso-
riodic forcing and feedback control is shown to be very usehance attractors are marked by bars in Figs. 8 and 9. Within
ful. these intervals, the spiral core tends to describe a long excur-

In this work, the Poincarescillator is considered in order sion around the detection point. Outside these intervals, the
to demonstrate the advantages of this comparison based estimated radius of the resonance attractor is smaller than the
the application of the period shift function. In contrast to thesize of the entrainment attractor. Hence, the spiral tip should
phase transition curvihat is frequently applied in the study always remain in the vicinity of the detecting point. If this
of periodically forced nonlinear oscillatofg,3,23), the pe-  restricted motion is synchronized with external forcing, the
riod shift function is used quite rarely. However, there areentrainment attractor is observed. Otherwise, the asynchro-
some studies where this function has been mead@@&81], nous attractor appears. In order to predict intervalsrof
while the term itself was proposed independently in Refwhere the entrainment attractor is expected, the period shift

R/A

VI. DISCUSSION
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function obtained for small values of the time delay is ex-which are very similar to those observed for a lumped oscil-
trapolated to a broader range ofsee Figs. 8 and 3kimilar  lator, the one-channel feedback control reveals very specific
to what can be done in the case of a lumped oscillator.  properties of a distributed system, which are obtained nu-
The asynchronous attractor observed in our experimentgerically, observed experimentally, and explained theoreti-
and computations exhibits irregular dynamics of an excitablgally. In particular, the main features of the diagrams in Figs.
medium in a parameter region which is far away from theg and 12 summarizing the experimental and numerical data
hypermeandering limit discovered by Winfrg22]. Irregular  can be explained in the framework of the developed theory.
behavior appears here as a consequence of an instability ks a continuation of this work, it will be interesting and
the entrainment attractor induced by the applied one-channthortant to analyze the dynamics of meandering spiral

feedback control. It is known that similar instabilities of waves Subjected to a g|oba| feedback ControL studied till
feedback-controlled oscillations can also be observed in thﬁow on|y in app“cation to r|g|d|y rotating Spira| waves

case of lumped oscillatorisee, e.g., Fig. ®)] and corre- [33,22.

sponding stability conditions can be deriiedg., Eq.(11) in

the case of the Poincarescillator. The determination of

exact conditions for the transition between entrainment and

asynchronous attractors remains as a challenge to future in-

vestigations. The authors thank the Deutsche Forschungsgemeinscharft
Thus, while fixed phase feedback control leads to result$DFG, Grant No. SFB 555for financial support.
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