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Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves

V S. Zykov, G. Bordiougov, H. Brandtsta¨dter, I. Gerdes, and H. Engel
Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany

~Received 8 April 2003; published 16 July 2003!

It is shown that meandering spiral waves rotating in excitable media subjected to periodic external forcing
or feedback control resemble many features of nonlinear lumped oscillators. In particular, the period shift
function obtained for the Poincare´ oscillator is qualitatively identical to that for spiral waves under fixed phase
control. On the other hand, under one-channel feedback control, meandering spiral waves exhibit quite differ-
ent dynamic regimes appearing as specific features of a distributed system. In particular, three types of
attractors~resonance, entrainment, and asynchronous! of spiral waves are observed in experiments with the
light-sensitive Belousov-Zhabotinsky reaction and in numerical simulations performed for the underlying
Oregonator model. A theory of the resonance attractor for meandering spiral waves is developed which predicts
the attractor radius and specifies the basins of attraction in good quantitative agreement with the numerical
computations and experimental observations.
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I. INTRODUCTION

Nonlinear oscillators subjected to external forcing exhi
very rich dynamics and are intensively studied in applicat
to many objects in physics, chemistry, and biology@1–6#.
Meandering spiral waves rotating in distributed excita
media resemble basic features of nonlinear oscillators an
particular, can be synchronized by application of a perio
parametric modulation@7,8#. However, the distributed natur
of excitable media allows us also to observe quite differ
dynamical regimes, such as a resonance drift of spirals
duced by external forcing@9,10#. Moreover, feedback-
controlled forcing of an excitable medium creates conditio
for the formation of so-called resonance and entrainmen
tractors of spiral waves@11,12#.

The controlled dynamics of spiral waves induced by
modulation of the excitability is important for many applic
tions, e.g., for the defibrillation of cardiac tissue@13,14#. In
this connection, theoretical and experimental investigati
of parametrically forced spiral waves are a subject of gro
ing interest@15–22#. However, the theory of the resonan
attractor of spiral waves is up to now elaborated only
application to rigidly rotating spirals@17,21,22#, while it was
first discovered in experiments with meandering spirals@11#.
Recent results@18# arouse a hope that the existing theory c
be generalized to the case of meandering spiral waves.

In this paper, we perform a systematic numerical and
perimental study of meandering spiral waves subjected
external stimulation and develop on this basis the appropr
theoretical description. In the first part of the paper, a p
odic forcing and a feedback control of the Poincare´ oscillator
is considered in order to illustrate some general propertie
lumped nonlinear oscillators. Then, periodic forcing a
fixed phase feedback control of meandering spiral waves
studied in the Oregonator model. The next part is devote
a description of spiral wave dynamics in the Oregona
model subjected to a one-channel feedback. Here a theo
the resonance attractor of meandering spiral waves is
sented. After this, the experimental results obtained for
light-sensitive Belousov-Zhabotinsky~BZ! reaction are de-
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scribed. In the final part, the theoretical and the experime
data presented in the paper are discussed.

II. POINCARÉ OSCILLATOR

The Poincare´ oscillator is commonly used in order to cap
ture important qualitative features of nonlinear oscillato
under external forcing@3,23#. It is convenient to express th
corresponding evolution equations in a polar coordinate s
tem (r ,u):

dr

dt
5kr~12r !, ~1!

du

dt
52p.

Starting atr 51, the phase point will describe the unit circ
with monotonously increasingu. The system achieves thi
attractor starting at any value ofr, exceptr 50. The param-
eterk determines the rate at which the value ofr approaches
r 51. The phase of the established oscillation is natura
specified by the polar angleu.

We consider first the dynamics of the Poincare´ oscillator
under a periodic sequence of short pulses. Let us assume
each of these pulses forces a jump of the point from (x,y) to
(x8,y8)5(x,y1a), where (x,y) are Cartesian coordinates
Of course, such a jump changes the momentary radiusr i to
the new value

r i85Ar i
21a212r ia sinu i , ~2!

whereu i is the phase just before thei th pulse was applied.
The pulse induces also a phase shiftq i that can be found

from the equation

cosq i5
r i1a sinu i

Ar i
21a212r ia sinu i

. ~3!
©2003 The American Physical Society14-1
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In the limit k→`, the disturbed value ofr i8 immediately
approaches the unit circle. In this case, the effect of perio
forcing on the Poincare´ oscillator is completely determine
by a one-dimensional map

u i 115u i1q i12pT, ~4!

where T is the stimulation period that can differ from th
natural periodTe51.

In the regime of a one-to-one frequency synchronizati
two equalities are valid:u i 115u i12p and q i5q i 115q.
Then, from Eq.~4! follows the condition for the synchroni
zation:

T512
q

2p
. ~5!

Substitution of Eq.~3! with r 51 into Eq. ~5! gives a rela-
tionship between the locking angleu and and the shifted
period~i.e., the forcing period! T in the synchronized regime

T512
1

2p
arccosS 11a sinu

A11a212a sinu
D . ~6!

Such a relationship is called the period shift function@24#. In
the case of small perturbationsa!1, its analytical expres-
sion becomes very simple:

T512
a cosu

2p
. ~7!

This pure harmonic shape of the period shift function is
very general property of nonlinear oscillators under sm
perturbations@24#.

Note, that the locking angleu specifies the phase shi
between the oscillations and the external forcing. In exp
ments with oscillating systems, it is suitable to character
this phase shift by a time delayt between some marker eve
and the application of a perturbation.

In Fig. 1~a!, the period shift function computed fork55
and a50.5 is plotted usingt5u/(2p) as an independen
variable. The obtained shape of the period shift function
viates only slightly from the harmonic limit~7!. Synchroni-
zation~frequency locking! is restricted to a certain interval o
the external periodT. Outside of this entrainment band, qu
siperiodic oscillations occur@1#. For each value ofT within
the entrainment band, there are two synchronized regi
corresponding to quite different values of the time delayt
@see Fig. 1~a!#. However, a linear stability analysis of ma
~4! reveals that only those regimes are stable for wh
dq/du,0. Taking into account Eq.~5!, it gives the follow-
ing stability condition:

dT

dt
.0. ~8!

Direct integration of the Poincare´ model ~1! subjected to a
periodic forcing confirms this analytical prediction: synchr
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nized oscillations are possible only on the branches of
period shift function with positive slope@see diamonds in
Fig. 1~a!#.

It is important to compare these results with feedba
controlled forcing of the Poincare´ oscillator. As an example
let us consider the following feedback mechanism, which
called fixed phase feedback control@25#. Here the forcing
pulses are applied with a fixed time delayt after the instant
when u50. Hence, all perturbations will be applied at th
same phaseu52pt. In the casek→`, the phase point re-
turns immediately to the limit cycle. Thus, after the very fir

FIG. 1. Period shift function computed for the Poincare´ oscilla-
tor ~1!. ~a! The solid curve corresponds to the analytical express
~6! with t5u/(2p). Diamonds and asterisks are obtained fro
direct integration of Eq.~1! with k55 under periodic forcing and
feedback control, respectively.~b! The dashed curve shows the p
riod shift function extrapolated untilt52. Diamonds and asterisk
represent results of direct integration of~1! with k52 under peri-
odic forcing and feedback control, correspondingly. Dotted lin
indicate the bistability interval.
4-2
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PERIODIC FORCING AND FEEDBACK CONTROL OF . . . PHYSICAL REVIEW E 68, 016214 ~2003!
pulse has been applied, a periodic regime will be establis
with a periodT depending on the value oft as specified by
the period shift function~6!. Obviously, under the feedbac
control, all branches of this function are stable, ifk is infi-
nitely large.

Direct integration of model~1! subjected to the fixed
phase feedback control demonstrates that all periodic
gimes determined by the period shift function can rem
stable even for finite values ofk. Figure 1~a! illustrates such
a possibility for k55. Thus, the feedback control revea
some branches of the period shift function, which are imp
sible to observe under periodic forcing. Moreover, by app
cation of the feedback control, the boundaries of the entr
ment band~Arnold tongue! are determined much more easi
than by periodic forcing. For each value oft, periodic oscil-
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lations are established very quickly, and it is not necessar
integrate Eq.~1! during a long time in order to distinguis
pure periodic from quasiperiodic regimes as it should
done in the case of periodic forcing.

However, if the rate constantk becomes smaller, the sys
tem has no time to return back to the unit circle after
perturbation and the history of the previous stimulatio
should be taken into account. Letr i andu i be the values ofr
andu just before thei th perturbation. Then the value ofr i8
after the perturbation obeys Eq.~2! and the phase jumpq i is
specified by Eq.~3!. This phase jump determines a timeTi
until the next perturbation:

Ti512
q i

2p
, ~9!
FIG. 2. Trajectories of the Poincare´ oscillator ~1! subjected to the feedback control computed fork52 and different values of the time
delay.~a! t50.6, ~b! t50.76, ~c! and ~d! t51.74.
4-3
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which is not necessarily constant in contrast to the cas
the periodic forcing.

The valuer i 11 just before the (i 11)th perturbation can
be found by integration of the system~1! @25#, which gives

r i 115
r i8

r i82~r i821!exp~2kTi !
. ~10!

The stationary stater p5r i5r i 11 of maps~2!, ~3!, ~9!, and
~10! determines possible periodic regimes of the Poinc´
oscillator under the feedback control. These regimes
stable for

Udri 11

dri
U

r i5r p

,1. ~11!

The derivativedri 11 /dri vanishes whenk→` and remains
small enough fork55. This explains the stability of the
synchronized regimes shown in Fig. 1~a! by asterisks.

However, direct integration of Eq.~1! performed fork
52 demonstrates that not all periodic regimes induced
the feedback are necessarily stable, since condition~11! is
not valid for some values oft. For instance, Fig. 2~a! shows
a stable periodic trajectory of system~1! computed fort
50.6, while the computations fort50.76 lead to an un-
closed irregular trajectory shown in Fig. 2~b!. This trajectory
appears due to an instability of the periodic oscillations c
responding to this value of the time delay.

Another interesting feature of the feedback-control
Poincare´ oscillator is a bistability phenomenon that can
observed for relatively long time delay. To consider this si
ation, the period shift function shown in Fig. 1~a! can be
easily extrapolated to an arbitrary large value of the ti
delay. Indeed, if periodic oscillations occur at the time de
t with the oscillation periodT5T(t), then the same peri
odic regime should be observed at the time delayt1T(t).
The extrapolated phase shift function obtained after suc
transformation is shown in Fig. 1~b! by the dashed curve
Obviously, this transformation flattens branches with a po
tive slope and enhances negative slopes. In particular,
slope of the period shift function neart51.75 becomes prac
tically vertical. At the time delayt52.75, the slope is even
positive, and the period shift function becomes bistable@not
shown in Fig. 1~a!#.

This bistability can also be observed for shorter time
lay, if the rate constantk becomes smaller. Note that th
dashed curve in Fig. 1~b! corresponds to the period shi
function obtained atk55, which is practically the same a
for k→`. Diamonds and asterisks in Fig. 1~b! represent pe-
riodic regimes of system~1! computed withk52 for the
periodic forcing and the feedback control, respectively. D
of feedback-control computations differ only slightly fro
the asymptotic shape of the period shift function. Howeve
bistability is observed neart51.74. Figure 2~c! shows the
trajectory obtained as a result of integration of system~1!
with continuously increasing value oft. Decreasing oft
starting att52.0 results in a quite different trajectory show
in Fig. 2~d!.
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The considered example of the Poincare´ oscillator dem-
onstrates that the period shift function is an appropriate t
to compare the dynamics of nonlinear oscillators subjecte
periodic forcing and to feedback control. In the followin
sections, the obtained results and methods will be use
analyze the dynamics of meandering spiral waves in dist
uted excitable systems.

III. PERIODIC FORCING AND FIXED PHASE FEEDBACK
CONTROL OF MEANDERING SPIRAL WAVES

Meandering spiral waves are common spatiotemporal
terns in excitable media and are intensively studied in exp
ments with the Belousov-Zhabotinsky reaction@3,26–28#.
The two-component Oregonator model is widely used
simulate the light-sensitive version of this reaction:

]u

]t
5¹2u1

1

e Fu2u22~ f v1f!
u2q

u1qG ,
~12!

]v
]t

5u2v.

Here the variablesu andv correspond to the concentration
of the autocatalytic species HBrO2 and the catalyst, respec
tively. The parameterse50.05, q50.002, andf 52.0 were
fixed. The termf5f(t) describes the additional bromid
production that is induced by the external illumination of t
system@29#. In order to simulate a periodic forcing of th
system, the functionf(t) is given as a sequence of impuls
with amplitudeA50.008 and durationD50.3, which are
added to a background intensityf050.01. The computations
were performed by the explicit Euler method on a 3
3380 array with a grid spacingDx50.2 and time stepsDt
50.002.

A spiral rotating counterclockwise near the center of t
simulated domain was created by a special choice of in
conditions for system~12!. The unperturbed trajectory of th
spiral wave tip and the shape of the spiral are shown in F
3~a!.

The observed compound rotation~meandering motion! of
the spiral tip can be characterized by two different perio
The oscillation period measured at the symmetry cente
unperturbed trajectory wasT052.8. A different periodT`

53.6 was measured far enough from the center near
domain boundary.

Far away from the rotation center, the meandering sp
wave resembles a rigidly rotating spiral: it has the form of
Archimedean spiral and uniformly rotates at a periodT` .
Moreover, a periodic parametric forcing with the periodT
5T` induces a resonant drift of the rotation center@see Fig.
3~b!#, as known for a rigidly rotating spiral@9,10#.

A quite different phenomenon, namely entrainment, c
be observed if the stimulation period is chosen to be clos
T0 @7#. Under such a forcing, the rotation center does
move, but the shape of the spiral tip trajectory is chang
with respect to the unperturbed one. Within an entrainm
4-4



he
ar
tr

n
s

u

s
n
ve
e
te

-
l i
in

e
ith

us
iral

ly at

scil-
ole
in-

ack
hed
as

e

e

el

-
ale

s the
o-
e

PERIODIC FORCING AND FEEDBACK CONTROL OF . . . PHYSICAL REVIEW E 68, 016214 ~2003!
band, the motion of the spiral tip is synchronized with t
external periodic forcing, similar to the case of the Poinc´
oscillator considered above. Three examples of entrained
jectories are shown in Figs. 4~a!–4~c!. The number of lobes
grows with the stimulation period. Of course, deformatio
of the trajectory shape are closely connected to variation
the phase at which the external impulses are applied.

In order to specify the phase of external forcing, let
consider the propagation velocityV of the spiral wave tip.
This value oscillates at the periodT0 for the unperturbed
spiral and at the periodT within the synchronization band, a
shown in Fig. 5. A suitable marker event in these oscillatio
is the instant at which the increasing velocity reaches a gi
value V5V0. The delayt can be determined as the tim
interval between this event and the application of the ex
nal pulse.

Using this definition oft, the period shift function corre
sponding to the periodic forcing of the meandering spira
specified by diamonds in Fig. 6. As in the case of the Po
caréoscillator, synchronization takes place forT within an
entrainment band. However, it can be assumed that th
data show only the branch of the period shift function w
positive slope, because the branches with negative slope
unstable under periodic forcing.

FIG. 3. Trajectory of the spiral wave tip computed from mod
~12!. ~a! The unperturbed trajectory~solid! and the momentary lo-
cation of the spiral wave~shaded regions!. ~b! Resonant drift in-
duced by a periodic parametric forcing with the periodT5T`

53.6. Thick segments of the trajectory correspond to applied
ternal impulses. The drift direction is specified by angleg.
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In order to show the domains with negative slope, let
apply a fixed phase control mechanism to meandering sp
waves. To this end, the pulses are generated immediate
the instancet, when V(t)5V0, or after a time delayt.
Hence, all pulses are applied at the same well-defined o
lation phase. Under similar fixed phase control, the wh
period shift function was reproduced in the case of the Po
caréoscillator @e.g., see Fig. 1~a!#.

For the meandering spiral wave, this fixed phase feedb
also gives interesting results shown in Fig. 6 by the das
curve. During these computations, the time delay w

l

x-

FIG. 4. Trajectories of the spiral wave tip computed for mod
~14! under periodic forcing at different periods~a!–~c! and under
fixed phase feedback control~a!–~f!. ~a! T52.29, t50; ~b! T
52.68, t50.62; ~c! T53.11, t51.3; ~d! t52.0, T52.84; ~e! t
54.6, T52.3; ~f! t54.6, T53.12. Thick segments of the trajec
tory correspond to the application of the external impulses. Sc
bar: five Oregonator space units.

FIG. 5. Oscillations of the spiral tip velocityV corresponding to
the synchronized rotation shown in Fig. 4~c!. The thin solid line
represents the stimulation sequence. The dashed line indicate
chosen threshold valueV050.7 ~Oregonator space units per Oreg
nator time units!. The dotted lines illustrate the definition of th
time delayt. Time t is measured in Oregonator time units.
4-5
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changed within an interval from zero tot'2T0. At the left-
most branch of the period shift function with a positiv
slope, the results of the periodic stimulation completely
incide with those obtained for the fixed phase stimulation
particular, the trajectories shown in Figs. 4~a!–4~c! are the
same for both types of stimulations. However, the fix
phase control allows us to reproduce additional oscillat
regimes corresponding to the branches with a negative sl
An example of such a trajectory is shown in Fig. 4~d!. Here,
in contrast to Figs. 4~a!–4~c!, the external pulses are applie
after the local curvature maxima of the trajectory have b
reached. Note that the time delay in Fig. 4~d! is larger than a
half of the periodT0.

The comparison of Figs. 4~a! and 4~e! illustrates the pos-
sibility to extrapolate the period shift function computed f
relatively smallt to larger values using the transformatio
t85t1nT(t), wheren is an integer. Indeed, the trajecto
shown in Fig. 4~e! is practically identical to the one in Fig
4~a!, although the corresponding time delays differ
2T(0).

Again, as in the case of the Poincare´ oscillator, a bistabil-
ity phenomenon is found in a narrow interval oft restricted
by the dotted lines in Fig. 6. Indeed, for the time delayt
54.6, two quite different trajectories are observed@cf. Figs.
4~e! and 4~f!#.

IV. THE OREGONATOR MODEL UNDER
ONE-CHANNEL FEEDBACK

In order to realize the fixed phase control conside
above, very detailed information about the spiral tip moti
should be available. Usually such information is rather di
cult to collect in experiments and therefore another feedba
control scheme, the so-called one-channel feedback, is
plied @11#. In accordance with this scheme, the wave activ

FIG. 6. Period shift function corresponding to periodic forci
~diamonds! and the fixed phase stimulation~dashed line! of the
meandering spiral wave computed for the Oregonator model~12!.
Dotted lines indicate the bistability interval. The rotation period a
time delay are measured in Oregonator time units.
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~e.g., the value of the variablev) is measured at a particula
detection point as a function of time. This value oscillat
with time. A natural marker event in these oscillations is
instant at which the value ofv exceeds a given threshol
v th . Consistent with the previously used definitions, the tim
delay t can be specified as the time interval between t
event and the application of the external pulse.

Meandering spiral waves in the Oregonator model s
jected to this one-channel feedback exhibit quite differ
dynamics compared to the fixed phase control. In particu
the spiral dynamics depends on the distance between the
tection point and the spiral wave core.

For instance, if initially the detection point is chose
rather close to the spiral wave tip, the application of t
one-channel feedback leads to the so-called entrainmen
tractor @11,12#. The rotation center of the spiral starts
move toward the detection point, and after a transient p
cess a perfectly synchronized trajectory of the spiral wave
can be registered. An example of such synchronized mo
computed with the Oregonator model is shown in Fig. 7~a!.
The same shape of the trajectory with the same oscilla
period can be found in computations under fixed ph
stimulation. However, it takes some time in order to achie
the synchronized motion by application of the one-chan
feedback, while the fixed phase control leads to immed
synchronization. Obviously, the value of the time delays c
responding to these synchronized regimes should be di
ent, because of the quite different definitions of the mar
events.

The period shift function corresponding to computatio
of the entrainment attractor for different values oft is shown
by asterisks in Fig. 8. Data obtained for periodic forcing w
the same definition of the time delay are shown by diamon
These data belong to the leftmost branch of the period s

FIG. 7. Trajectories of the spiral wave tip computed for mod
~12! under the one-channel feedback.~a! t50.6, T52.84; ~b! t
51.4; ~c! t51.3; ~d!t52.0. Thick segments of the trajectory co
respond to the application of the external impulses. Scale bar:
Oregonator space units.
4-6
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function with a positive slope, which looks qualitative
similar to that obtained above~cf. Fig. 6!. This branch is
extrapolated to larger values oft by the transformationt8
5t1nT(t).

The main qualitative difference between the period s
functions shown in Figs. 6 and 8 is that under the o
channel feedback, it is not possible to obtain the branc
with a negative slope. Moreover, very often it was impo
sible to observe synchronized motion even for branches w
a positive slope.

The main reason for this discrepancy is the existence
the so-called resonance attractor of spiral waves@11,12#. A
specific feature of this dynamic regime is a relatively lar
distance between the detection point and the spiral core
ter. However, the resonance attractor can be achieved ev
the detection point is initially located rather close to the s
ral core. This happens, for instance, if the time delayt is
chosen larger than the boundary value marked by the
dotted line in Fig. 8. Figure 7~b! illustrates the trajectory o
the spiral tip computed for this case. The trajectory cons
of a meandering motion of the spiral tip that resembles
unperturbed one, superimposed by a drift of the symme
center. After a transient process, this drift occurs alon
circle centered at the detection point.

While the entrainment attractor resembles synchroni
oscillations of lumped systems, the resonance attractor
typical property of a distributed medium. A theory of th
resonance attractor has been elaborated recently@17,21# in
application to a rigidly rotating spiral. In order to extend th
theory to the case of a meandering spiral, let us assume
far away from the symmetry center the shape of a coun
clockwise rotating wave front is approximated by
Archimedean spiral:

FIG. 8. Period shift function corresponding to periodic forci
~diamonds! and one-channel feedback~asterisks! computed for the
Oregonator model~12!. Dashed lines represent other branches
the period shift function obtained after its extrapolation to larg
values of t. Within intervals of t bounded by dotted lines an
marked by bars, the resonance attractors are observed. The ro
period is measured in Oregonator time units.
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2p

l
r 1vt, ~13!

where l is the wavelength andv52p/T` is the angular
velocity. The constant angleQ0 specifies the orientation o
the spiral att50.

Periodic forcing of the spiral by a sequence of sh
pulses will result in a resonant drift, as shown in Fig. 3~b!. To
simplify considerations, each pulse will be represented asd
function of time. Let us assume that under the periodic fo
ing given asI (t)5Ad@cos(vt)21# andQ050, the observed
direction of the resonant drift is specified by an angleg
5w with respect to theX axis. For a fixed shape of th
pulses, this angle is a characteristic parameter of the ex
able medium. Obviously, for an arbitraryQ0, the drift angle
will be g5w1Q0. A periodic forcing in the formI (t)
5Ad@cos(vt2fm)21# with a phase shiftfm can be consid-
ered as a stimulation withfm50, but with initial spiral ori-
entation taken at the timet05fm /v. Thus, the drift direc-
tion for an arbitrary chosenQ0 andfm can be written as

g5w1Q01fm . ~14!

Under the one-channel feedback control, the phase of
stimulating pulse sequence depends on the spiral loca
For instance, if the spiral wave center is placed at the po
(d,0), the spiral front specified by Eq.~13! crosses the origin
of the coordinate system at each timet i when vt i1Q0
2(2p/l)d52p12p i . Hence, the stimulating sequenc
will be generated as

I ~ t !5AdFcosS vt2p1Q02
2p

l
d2vt D21G , ~15!

with the phase shiftfm determined by the following expres
sion:

fm5p2Q01
2p

l
d1vt. ~16!

To determine the direction of the drift induced by the on
channel feedback, expression~16! should be substituted into
Eq. ~14!, which yields

g5w1p1
2p

l
d1vt. ~17!

It is important to stress that under the described one-cha
feedback, the drift direction does not depend on the ini
orientationQ0 of the spiral. The displacementd of the spiral
center from the detection point and the time delayt com-
pletely determine the drift angleg with respect to the dis-
placement direction.

Along a resonant orbit around the detecting point, t
induced drift is always orthogonal to the radial directio
This means that the drift angleg should obey the simple
condition

g5p/21pn, ~18!
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wheren is an arbitrary integer. It follows from Eq.~17! that
the motion along the circular pathway will be stable only ifn
is an even number:n52m. Indeed, according to Eq.~17!, g
increases withd. Therefore, small deviations from the circu
lar pathway are damped out~amplified! for n52m (n52m
11). The radiusR of the corresponding orbit can be foun
as a solution of Eqs.~17! and ~18!:

R/l5m20.252
w

2p
2t/T` . ~19!

These stable orbits are the attractors of a spiral wave u
the one-channel feedback. The basins of attraction
bounded by unstable orbits, which corresponds ton52m
11, and have radii

R/l5m10.252
w

2p
2t/T` . ~20!

In order to apply this theory to the Oregonator model,
characteristic constantw should be determined. To this en
the computations presented in Fig. 3 can be used. Indeed
orientation of the spiral wave just before the beginning of
periodic stimulation is shown in Fig. 3~a!. The presented
front shape is approximated by Eq.~13! with Q050.65 and
l517.7. The angleg which specifies the drift direction
shown in Fig. 3~b! is estimated asg521.15. Taking into
account that in these computations the phase shiftfm50,
and substituting these data into Eq.~14!, the valuew5
21.80 is found.

Substitution of this value into Eq.~19! yields the attractor
radiusR as a function of the time delayt in the feedback
loop. This relationship is plotted as dashed lines in Fig.
For each value oft, there are several possible stable orb

FIG. 9. RadiusR of the resonance attractors vs the time delat
computed for the Oregonator model~diamonds! and predicted by
Eq. ~19! ~dashed lines!. Boundaries of basins of attraction accordin
to Eq. ~20! are shown by solid lines. Radii of the entrainment a
asynchronous attractors are shown by triangles and squares, re
tively.
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corresponding to different values of the integerm. The spiral
wave is attracted to an orbit with a givenm if initially it is
located in the corresponding basin of attraction. The bou
aries of the basin of attraction are determined by Eq.~20! and
shown by solid lines in Fig. 9. These theoretical predictio
are in good quantitative agreement with the results of
direct integration of the Oregonator model~12! represented
by diamonds in Fig. 9.

Only in the region of small radii, whereR,0.3l, depen-
dence~19! is violated. This is the region where the entrai
ment attractor can be observed. Radii of the entrainmen
tractors obtained in computations presented in Fig. 8 are
shown in Fig. 9. For smallt, the radius increases with th
time delay and reaches the boundary of the basin of att
tion of the resonance attractor att/T'0.4. This critical
value for the time delay is shown as the left dotted line
Fig. 8. For larger time delay, within the basin of attraction
the resonance attractor, the entrainment attractor beco
unstable@cf. Figs. 7~a! and 7~b!#. The radius of the entrain
ment attractor remains nearly constant when the time de
increases and can be estimated asRe50.2l. Using this esti-
mate and considering Fig. 9, it can be expected that the
trainment attractor is unstable in the interval 0.4,t/T`

,0.9 and the resonance attractor should be observed.
interval of t is marked by a bar in Fig. 8.

Now it becomes clear why a branch of the period sh
function with a negative slope was not found in our comp
tations illustrated by Fig. 8. Indeed, the entrainment attrac
cannot exist within the basin of attraction of the resonan
attractor.

Expressions~19! and ~20! and Fig. 9 show that the inter
val of t, where only the resonance attractor can be obser
will appear periodically along thet axis with periodT` ~see
other bars in Fig. 8!. Hence, once more the entrainment a
tractor can be expected within the interval 0.9,t/T`,1.4.
Our computations witht/T`'1.0 confirm this prediction as
shown in Fig. 8. However, even in this interval oft, where
the resonance attractor does not destroy the synchron
motion, it was impossible to observe a branch of the per
shift function with a negative slope. Instead of complete s
chronization, the trajectory looks like an asynchronous m
tion, still occupying a relatively small spatial domain,
shown in Fig. 7~c!. We call this new dynamical regime th
asynchronous attractor.

Figure 8 shows that the next possible region of the
trainment attractor is located neart/T`'2.0. However, here
also only the asynchronous attractors have been found,
see Fig. 7~d!.

V. THE BZ REACTION UNDER
ONE-CHANNEL FEEDBACK

The experimental part of this work is performed with th
light-sensitive version of the BZ reaction using the set
described in Ref.@18#. An open reactor allows us to maintai
the system in a stationary nonequilibrium state. Premix
feeding solution prepared from stock solutions contain
@NaBrO3#05(2.0631021)M ~Aldrich, 99 1%!, @H2SO4#0
5(3.131021)M ~Aldrich, 95–98 %!, malonic acid

ec-
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@CH2(COOH)2#05(1.8631021)M ~Aldrich, 99%!, and
@NaBr#054.1231022 ~Fluka, p.a.! is pumped continuously
through the reactor with the rate 120 ml/h. Circulating wa
from a thermostat maintains the temperature at (2
60.5) °C. The catalyst is immobilized in a silicahydrog
layer of 0.5 mm thickness~active layer! prepared on a plate
of frozen glass~diameter 63 mm!. To protect the active laye
from stirring effects, it is covered by an inactive gel layer n
loaded with the catalyst.

The active layer is illuminated by a video projector~Pa-
nasonic PT-L555E! controlled by a computer via a fram
grabber~Data Translation, DT 2851!. The illuminating light
is filtered with a bandpass filter~BG6, 310–530 nm!. Every
1 s the pictures of the oxidation waves appearing in the
layer are detected in transmitted light by a charge-coup
device camera~Sony AVC D7CE! and digitized with a frame
grabber~Data Translation, DT 3155! for immediate process
ing by the computer. During the same time step, the li
signal applied by the projector can be changed in accorda
with the processed information~feedback! or following ana
priori given program~e.g., periodic forcing!.

A single spiral wave, which constitutes the initial cond
tion for all the experiments, is created in the center of the
disk by breaking a wave front with an intense light spot. T
location of the spiral wave tip is defined online as the int
section point of contour lines (0.63 amplitude! extracted
from two digitized images taken with time interval 2.0 s. T
tip trajectory, the control signal, and the wave activity at
arbitrary detection point can be visualized online by the co
puter.

An unperturbed spiral has the wavelengthl'2.0 mm. Its
tip describes a meandering trajectory containing about f
lobes. The rotation period measured far away from the s
metry center wasT`'40 s.

Under a periodic change of the illumination, the spi
rotation can be synchronized. Figures 10~a! and 10~b! show
two examples of such synchronized spiral tip motion o
served for two different periods of external forcing. Simult
neous registration of the wave activity at the symmetry c
ter of the observed trajectory allows us to measure the t
delay between the wave passage through the center an
application of an external perturbation. These data are u
to determine the period shift function shown in Fig. 11.

Application of the one-channel feedback control also
lows us to observe a synchronized motion if the entrainm
attractor is created. For instance, the tip trajectory show
Fig. 10~b! is observed for both types of stimulation: period
forcing and one-channel feedback control. However, not
synchronized regimes obtained under periodic forcing can
reproduced by application of the one-channel feedback
vice versa. For instance, the trajectory shown in Fig. 10~a! is
observed only in experiments with periodic forcing. All a
tempts to reproduce the periodic regime introducing a co
sponding time delay into the feedback loop resulted in
resonance attractor. On the other hand, a periodic forc
does not synchronize the spiral tip motion in the period ra
0.88,T/T`,0.93, while a one-channel feedback does.

Another possible regime under the one-channel feedb
control is the resonance attractor. An example of this reg
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is shown in Fig. 10~c!. In contrast to the entrainment attra
tor, the rotation center moves along a circle with a rad
much larger than the size of single lobes. This radius depe
on the time delayt in the feedback loop. Data of a system
atic study of this dependence are shown in Fig. 12 by d
monds.

The asynchronous attractor is also observed in our exp

FIG. 10. Trajectories of the spiral wave tip observed in expe
ments with the BZ reaction under periodic forcing~a!, ~b! and under
the one-channel feedback~b!–~d!. ~a! T528 s, t522 s; ~b! T
532 s, t50 s; ~c! t54 s; ~d! t530 s. Thick segments of the
trajectory correspond to the application of the external impuls
Scale bar: 0.5 mm.

FIG. 11. Period shift function corresponding to periodic forci
~diamonds! and one-channel feedback~asterisks! obtained experi-
mentally for the light-sensitive BZ medium~solid line!. Extrapola-
tion to larger values oft is shown by the dashed line. Within inter
vals of t bounded by dotted lines and marked by horizontal ba
the resonance attractors are observed.
4-9
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ments@e.g., see Fig. 10~d!#. In contrast to the resonance a
tractor, the motion of the spiral tip is restricted to a relative
small spatial domain, such as in the case of the entrainm
attractor. However, this motion is not synchronized with t
feedback signal.

Expression~19! for the radius of the resonance attract
contains only one unknown parameterw, which specifies the
direction of the resonance drift. In order to avoid rather co
plicated experimental procedure to determine this value,
obtained experimental data were fitted by linear depende
~19! with w520.31 as shown in Fig. 12 by dashed line
Then, the boundaries of the basin of attraction were spec
in accordance with Eq.~20! ~solid lines in Fig. 12!. These
basins of attraction determine intervals of the time delat
corresponding to the appearance of the resonance attra
These intervals are marked by horizontal bars and vert
dotted lines in Fig. 11.

VI. DISCUSSION

A systematic study of the meandering spiral wave un
pulsatory modulation performed in this work demonstra
very reach diversity of possible dynamical regimes. To id
tify relationships in this diversity, a comparison between p
riodic forcing and feedback control is shown to be very u
ful.

In this work, the Poincare´ oscillator is considered in orde
to demonstrate the advantages of this comparison base
the application of the period shift function. In contrast to t
phase transition curve~that is frequently applied in the stud
of periodically forced nonlinear oscillators@2,3,23#!, the pe-
riod shift function is used quite rarely. However, there a
some studies where this function has been measured@30,31#,
while the term itself was proposed independently in R

FIG. 12. Radii of resonance~diamonds!, entrainment~triangles!,
and asynchronous~squares! attractors determined experimental
for meandering spiral waves in the light-sensitive BZ medium
the time delay in the feedback loop. The dashed lines show
theoretical predictions for the radii of the resonance attractor
cording to Eq.~19!, the solid lines are the boundaries of the bas
of attraction according to Eq.~20!.
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@24#. For lumped systems, the period shift function is ve
helpful to analyze the stability of a frequency locked moti
and bistability phenomena.

The motion of a meandering spiral wave under fix
phase feedback control in many aspects resembles the
namics of a periodically perturbed nonlinear lumped osci
tor. Indeed, the period shift functions shown in Figs. 1~b! and
6 are qualitatively identical. Frequency locked oscillatio
take place in a restricted range of the forcing period. O
the part of the period shift function with positive slope
reproducible under periodic forcing. For sufficiently larg
time delay in the feedback loop, bistability can be observ

Apart from a fixed phase control, there are many oth
possibilities to construct an effective feedback mechanism
an excitable medium. A typical example is a one-chan
feedback that is analyzed in detail in this work. This type
feedback control is commonly used in experiments with
BZ reaction @11–13,18,19# and induces qualitatively new
features in the dynamics of meandering spiral waves co
pared to lumped oscillators. Our systematic study of sp
wave dynamics under the one-channel feedback reveals t
types of attractors of meandering spiral waves. Two of the
the resonance and the entrainment attractors, have bee
ported earlier@11,12#, while the third one, the asynchronou
attractor, was unknown. The final diagram in Fig. 12 sho
the mutual arrangement of these three types of attract
Among them the most surprising is the resonance attrac
which appears as characteristic features of distributed
tems. In contrast to the frequency locked motion of lump
oscillators, a temporal synchronization is not a specific pr
erty of this regime. Nevertheless, the resulting trajector
are well ordered in space@see Figs. 3~b! and 7~b!#.

In this work, the theory of the resonance attractor dev
oped earlier for a rigidly rotating spiral@17,21# is generalized
to the case of meandering spiral waves. The obtained de
dence~19! of the attractor radius on the time delay in th
feedback loop contains only one unknown parameter, wh
can be directly measured or determined from available
perimental data. The resulting theoretical predictions for
attractor radius are in good quantitative agreement with b
numerical and experimental data~cf. Figs. 9 and 12!.

Our theory predicts also the basins of attraction~solid
lines in Figs. 9 and 12! and allows us to answer the importa
question first posed in Ref.@12#: Why does the entrainmen
attractor become unstable for sufficiently large time dela
Our study clearly demonstrates that this destabilization ta
place if the spiral tip enters into the basin of attraction o
resonance attractor.

The intervals of the time delay corresponding to the re
nance attractors are marked by bars in Figs. 8 and 9. Wi
these intervals, the spiral core tends to describe a long ex
sion around the detection point. Outside these intervals,
estimated radius of the resonance attractor is smaller than
size of the entrainment attractor. Hence, the spiral tip sho
always remain in the vicinity of the detecting point. If th
restricted motion is synchronized with external forcing, t
entrainment attractor is observed. Otherwise, the async
nous attractor appears. In order to predict intervals ot
where the entrainment attractor is expected, the period s
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function obtained for small values of the time delay is e
trapolated to a broader range oft ~see Figs. 8 and 11! similar
to what can be done in the case of a lumped oscillator.

The asynchronous attractor observed in our experim
and computations exhibits irregular dynamics of an excita
medium in a parameter region which is far away from t
hypermeandering limit discovered by Winfree@32#. Irregular
behavior appears here as a consequence of an instabili
the entrainment attractor induced by the applied one-cha
feedback control. It is known that similar instabilities
feedback-controlled oscillations can also be observed in
case of lumped oscillators@see, e.g., Fig. 2~b!# and corre-
sponding stability conditions can be derived@e.g., Eq.~11! in
the case of the Poincare´ oscillator#. The determination of
exact conditions for the transition between entrainment
asynchronous attractors remains as a challenge to futur
vestigations.

Thus, while fixed phase feedback control leads to res
ry

ce

s.

.
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which are very similar to those observed for a lumped os
lator, the one-channel feedback control reveals very spe
properties of a distributed system, which are obtained
merically, observed experimentally, and explained theor
cally. In particular, the main features of the diagrams in Fi
9 and 12 summarizing the experimental and numerical d
can be explained in the framework of the developed the
As a continuation of this work, it will be interesting an
important to analyze the dynamics of meandering sp
waves subjected to a global feedback control, studied
now only in application to rigidly rotating spiral wave
@33,22#.
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